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Abstract

Hedy is a gradual programming language for education. It consists of 18 levels, each
supporting new commands or requiring code that satisfies new syntax rules, to gradually
learn programming in Python. The semantics of a language describe the behaviour of
programs in that language or the language as a whole, semantics give meaning to syntax.
Formally describing and implementing the semantics of Hedy helps to improve it, by
finding unwanted or illogical behaviours. Dafny can be used to implement semantics and
compile it to other programming languages, for a reference implementation. Having a
reference implementation of how this open source programming language should work is
helpful for the people still developing Hedy and might encover issues.
Keywords: Big-Step Operational Semantics, Hedy, programming languages for novices,
education, Dafny, software verification, Python
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1 Introduction

Hedy is a gradual programming language for education [Her20]. It consists of several levels,
starting out very simple with only a few commands and as little syntax rules as possible. Every
next level supports new commands or requires a code that satisfies new syntax rules. After
the final level, Hedy code actually corresponds with Python code. In the case of the Hedy
programming language, every level has its own syntax and semantics.

Just like natural languages, programming languages consist of syntax and semantics. Syntax
tells you how to write something (spelling rules) and semantics give meaning to this syntax.
In the case of natural languages, this can be described and will sometimes show that not
everything is completely logical, and the language might change overtime, so the syntax and
semantics might also change. In the case of a programming language, syntax tells us how to
write things like where to put a colon, for example. Semantics is what gives meaning to the
syntax, it explains the behaviour of a language. Different from a natural language, a program-
ming language did not arise at some point, and might evolve from there, but programming
languages are created, (usually) with a plan behind it. New programming languages can make
programming easier in general, or for a specific domain. For programming languages, we can
do more than just describe the syntax and semantics, we can also make some changes to
make the language more intuitive. Designing and implementing a programming language is
often a work-in-progress, so the description of syntax and semantics might also be used to
check the developers, to see if changes made to a language are consistent with the syntax
and semantics. When designing a new programming language, it is useful to have a detailed
description of how it should work. Especially with multiple people working on it at the same time.

Dafny is a programming language for software verification [Mica, Micb]. It compiles to other
programming languages, like Java, C# and Go. Implementing semantics in Dafny and compiling
it to for example C#, to make a reference implementation, could help finding issues in the
implementation of Hedy. Thus, it might be interesting to formally describe the semantics of
Hedy and based on that, make a reference implementation in Dafny. The goal would be to
improve Hedy, by finding issues. The research question that follows is:

How can we uncover issues in the implementation of the Hedy programming language, by
providing a formal description of its semantics and a formalised implementation?

This chapter contains the introduction; Section 2 includes background information and related
work on Hedy; Section 3 includes explanations on used mathematics and on semantics; Section 4
discusses background information and related work on Dafny; Section 5 describes the semantics
of Hedy; Section 6 describes the uncovered issues in Hedy; Section 7 concludes.

I would like to thank my supervisors, dr. Henning Basold and dr.ir. Felienne Hermans, both from
Leiden Institute of Advanced Computer Science [lia], for their guidance during the research
project, their feedback and encouragement, also during the writing process. I have learned a
lot and I am looking forward to the teacher’s programme, bringing things I’ve learned into
practice and combining computer science with education in the future, possibly as a teacher
and possibly as a researcher.
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2 Hedy

Hedy is a gradual programming language, designed for education purposes [Herc, Herb, Her20].
The target audience consists of novices from the age of about 11. [Her20] It consists of multiple
levels and starts very simple with only a few possible commands and as little syntax rules as
possible. New syntax rules and new programming concepts are introduced in the higher levels.
In the highest levels, Hedy code is the same as Python code. The language works in the browser
and is available in many (natural) languages, which should make the barrier to get started low.
More content and translations are added regularly. The English and Dutch versions have the
biggest amount of levels and content in the form of examples and explanations. The language
is still in development and it is open source, with many contributors [Herb]. The question might
arise, why a gradual programming language? And why is it based on Python? These questions
will be addressed in this section. The design principles and changes per level will be listed and
the user interface will be shown. Hedy will also be compared to other programming languages
later in this section.

2.1 Why gradual?

The syntax of programming languages is one of the aspects of programming that novices
commonly struggle with: remembering the appropriate commands to use and arranging them
into a working program. [Her20] Hedy is presented as a new way of teaching the syntax of a
programming language to novices, inspired by educational methods by which punctuation is
taught to children. Programming is frequently associated with STEM (Science, Technology,
Engineering, and Mathematics) [SKB+13, WBH+16], however learning a programming lan-
guage has many similarities to learning a natural language, since learners must learn about
both semantics and syntax. It has been suggested that using instructional tactics similar to
those used in natural language teaching might improve programming education [HA17, Por18].
Inspired by these tactics for natural language education, Hedy has been designed as a gradual
language for programming education.

2.2 Python based

Python has been compared to other programming languages, to understand the effect of
different languages on study success of learners. The research outcomes suggest that Python
has benefits in teaching. Comparing a course in Python to one in C, Wainer and Xavier found
that students were less likely to fail and scored higher on the exam when using Python [WX18].
Also when starting out with Python and learning Java later, no disadvantages have been
found in research. [MPS06] Thus, learning a simpler language does not seem to interfere with
learning a more complicated language later. Python might even serve as a good preparation
for subsequent C++ courses. [EP10, EPM09] According to research comparing Python with
Java for programming education, Python makes basic concepts easier to introduce in quite a
few cases, because of less syntactic noise and less conceptual noise. [PDP19] A short list has
been proposed, of syntax- and semantics-related desiderata for a beginner language (which
neither Java nor Python completely answer). Desideratum 1: The first steps in a language (e.g.,
console print, variable assignment) should be painless and minimize both the syntactic noise
and the conceptual noise. [PDP19] This fits with the design principles of Hedy.
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2.3 Design Principles

According to the creator of this programming language, Felienne Hermans, Hedy follows these
design principles. [Her20]

1. Concepts are offered at least three times in different forms

2. The initial offering of a concept is the simplest form possible

3. Only one aspect of a concept changes at a time

4. Adding syntactic elements like brackets and colons is deferred to the latest moment
possible

5. Learning new forms is interleaved between concepts as much as possible

6. At every level it is possible to create simple but meaningful programs

2.4 User Interface

Figure 1 shows the current Hedy implementation. On the left, there’s an editor for entering
code, and on the right, there’s a field for output. Each level also includes buttons that allow you
to try the commands you’ve learned so far. Videos with explanations and written assignments
are also available from within the user interface for each level.

Figure 1: Level 1 of the Hedy user interface in English [Herc]

3



2.5 Changes per level

Currently, Hedy consists of 18 levels and the changes made per level are given here for a short
overview. There are plans to increase the amount of levels, to make some steps/gaps between
levels smaller.

• Level 1 supports print, ask, echo, turn and forward.

• Level 2 adds is for assignment and sleep. The command echo is not supported anymore,
and turn cannot be used with left or right anymore (only with nothing or an integer).

• Level 3 adds lists, with commands at random, add to, remove from.

• Level 4 adds quotes around text used with print and ask.

• Level 5 adds if and if else, where the if-condition can be equality comparison with
is or checking if something is an element of a list with in. (Note that is can now be
assignment or comparison!)

• Level 6 adds = for assignment or comparison, and calculations with integers are now
possible.

• Level 7 adds repeat.

• Level 8 adds indentation.

• Level 9 adds nesting.

• Level 10 adds for ... in ...

• Level 11 adds for ... in range ... to .... Now, repeat is not possible anymore.

• Level 12 adds floats and quotes around all text (so now also when used with assignment,
lists and if).

• Level 13 adds and and or.

• Level 14 adds comparisons: <, >, <=, >=, ==, ! =. (Note that now is, = and ==
can be used for comparison and is and = for assignment!)

• Level 15 adds while.

• Level 16 adds [ ] for lists. Using print and ask with a list is now possible.

• Level 17 adds elif and a colon before every indentation (so behind if, for and while).

• Level 18 adds open and close paren to print and range, the syntax becomes print(...)
and range(...)
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2.6 Extensible and Growable Languages Outside of Education

Outside of programming education, languages have been proposed that change over time. For
example, Fortress [ACN+09] is a growable language and Lusth et al. [LKT09] proposed using
reflection and overloading to grow and shrink languages. These languages were not proposed
for education, different from Hedy, but other reasons can be found to prefer a programming
language that changes. Fortress was designed to accommodate the changing needs of its users,
and the proposal by Lusth et al. could be useful for example to comply with specific coding
style guidelines. The purpose of Hedy is to teach programming.

2.7 Programming Languages for Novices

Hedy is the realisation of a new approach to programming education. Hedy is not the first pro-
gramming meant for education though. Three different approaches in programming languages
for novices can be identified in prior research [B+94, Her20]: Mini-languages, sub-languages
and the incremental approach. Hermans gives examples of languages for all three approaches
and explains how these approaches are different from the gradual approach that Hedy uses.
Mastering a mini-language can be a goal in itself, leading to algorithmic thinking, but Hedy is
designed to help novices learn Python eventually. Sub-languages use only a set of commands
from a larger programming language, usually one that is used in practice. Initially, the goal of
sub-languages was not to gradually expand them, like Hedy, but simply to select a subset to
teach. The incremental approach teaches a small subset of a programming language, with each
subset introducing new programming constructs. Other forms of incremental teaching used
subsets that were specifically not organized in a hierarchy, where the “higher level” contained
the “lower level”, like in Hedy, but instead separated the language into overlapping languages,
similar to how chapters in a textbook would. [Her20]

Kelleher and Pausch give a more extensive overview of different kinds of programming languages
for novices. [KP05] Figure 2 shows the novice programming systems and languages taxonomy
according to their study. The systems in this taxonomy are divided into two categories: those
that seek to teach programming for its own sake and those that attempt to facilitate the use of
programming to achieve a specific purpose. The taxonomy is arranged first by the system aims,
either teaching or utilizing programming, and then by the major feature of programming that
the system seeks to simplify. Each system appears just once in the taxonomy. However, many of
the taxonomy’s systems are based on earlier systems’ principles. As a result, a system that was
affected by natural language programming may not be classed alongside other natural language
systems if the system’s major contribution was not to enable natural language programming.

The idea for a language similar to Hedy has been descibed before [Shn77]. In the paper,
no implementation was given in a language or lesson series though. Some other languages
extend over time exist and share philosophical principles with Hedy. For example, Cazzola and
Olivares gradually build up to JavaScript [CO16]. Cupi2 is Java-based, in which students solve
increasingly more complicated problems with partly generated programs [VJV13]. DrScheme
set of languages, each a larger subset of Scheme [FFFK04]. However, a language of which the
syntax gradually changes, rather than being extended, has not been described or implemented
before.
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Figure 2: Novice Programming Systems and Languages Taxonomy. [KP05]
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3 Semantics and Mathematical Preliminaries

Before diving into the semantics of Hedy specifically, a brief introduction into syntax, semantics
and category theory is given in this section. First, the difference between syntax and semantics
will be explained, then the different methods for describing the semantics of a programming
language is discussed. Then some set theory and type theory will be introduced.

3.1 Syntax versus Semantics

A computer language’s syntax is a collection of rules that specify the symbol combinations
that are regarded correctly formed statements or expressions in that language. Syntax relates
to the structure of the code, but semantics, on the other hand, refers to the content or
meaning [BM17, Win93]. The syntax of a language specifies the structure of a valid program,
but it does not tell you anything about the program’s content or the outcomes of running
it. Semantics deals with the meaning provided to a combination of symbols (either formal or
hard-coded in a reference implementation). Not all programs that are syntactically correct are
semantically correct. In natural language, we also speak of syntax and semantics, and it works
the same there. It may not be possible to assign a meaning to a grammatically correct sentence
or the sentence may be false, for example:

• “Colorless blue ideas sleep furiously.” is grammatically well formed but has no generally
accepted meaning.

• “Paul is a married bachelor.” is grammatically well formed but expresses a meaning that
cannot be true.

3.2 Denotational and Operational Semantics

The two main techniques to describing the semantics of a programming language are deno-
tational semantics and operational semantics [BM17, Win93]. In denotational semantics, the
meaning of a program is expressed in terms of mathematical objects that represent expressions
and their manipulations. Operational semantics express the meaning of a program through
logical statements about its execution. Denotational semantics tend to be more powerful, as
properties of the mathematical objects used can aid in proving properties of the programs, but
are harder to write down. Operational semantics tend to be easier to write down and are more
closely related to the execution of programs. As a result, they are more valuable as a basis for
language implementations. This thesis will be using operational semantics.

3.2.1 Small-Step and Big-Step Operational Semantics

There are two methods for constructing proofs in operational semantics: big-step and small-step.
Big-step semantics describe how to break down a calculation into smaller sub-calculations and
how the results should be combined. Small-step semantics simply provide rules for how all of a
program’s components should develop. The meaning of a program is then formed by applying
the proper rules repeatedly. In this thesis, big-step semantics will be discussed exclusively.
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3.3 Set Theory

Sets and types are not the same thing, but they are similar and can likewise be used as a
foundation of mathematics. First, we give an explanation of the way set theory is defined, to
show how this differs from type theory. A set theory is typically built on top of a logic. A logic
can be defined by giving a number of inference rules. The inference rule (Rule) says that from
the premises p1, ..., pm we can deduce the conclusions c1, ..., cn.

p1...pm
(Rule)

c1...cn

An example of such an inference rule in propositional logic, is modus ponens, which says that
if A implies B and we have A, then we can deduce B.

A =⇒ B A
(MP )

B

Another example on an inference rule is the law of the excluded middle, which states that
without any premises, we can conclude that A is true or A is not true.

(LEM)
A ∨ ¬A

After we define our logic by stating inference rules, we define our set theory by taking a number
of axioms, these are statements we assume without proof. A formal proof is now an ordered
list of statements such that each statement can be deduced from earlier statements or axioms
by some inference rule.

3.3.1 Partial maps

A partial function f from a set X to a set Y is a function from a subset S of X to Y . f
is said to be total if S = X, that is, if f is defined on every element in X. [Win93] More
technically, a partial function, is a binary relation over two sets that maps every element of the
first set to at most one element of the second set, it is thus a functional binary relation. It
generalises the definition of a (total) function by not requiring that each element of the first
set be mapped to exactly one element of the second. When the exact domain of definition
is unknown or impossible to establish, a partial function is frequently utilised. This is true in
calculus, where the quotient of two functions, for example, is a partial function whose domain
of definition cannot contain the denominator’s zeros. A partial map f from a set X to a set Y
can be written as:

f : X ⇀ Y

In this thesis, the partial map will be useful for defining memory Σ as a map from variable
locations/names to their values. We need a partial map for this, because not every possible
variable name/location will be used and map to a value. Another important notion for defining
the memory is that the values are not always of the same type and thus not elements of the
same set. This means that the memory is actually not one partial map, but a set of multiple
partial maps. The notation used for this are rectangular brackets:

Σ = [X ⇀ Y ]
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The domain X will be all possible variable names/locations, but the codomain Y is more
difficult, since it should be multiple different sets, depending on the type of the value. For this,
we can use a coproduct of sets.

3.3.2 Coproducts

In order to understand what the coproduct of sets is, it might be useful to first introduce the
product of sets. The product of two sets X and Y , is the set of all pairs with the first value
taken from X and the second taken from Y . This can be defined as:

X × Y = {(x, y) | x ∈ X, y ∈ Y }

The coproduct of sets is the same as their disjoint union. If sets X and Y are disjoint, so they
share no elements, the disjoint union X

∐
Y is the same as the (regular) union:

X ∪ Y = {x | x ∈ X or x ∈ Y }

If the original sets are not disjoint, we need to give some index to each element denoting the
originating set. Then, elements that are present in two sets will also appear twice in the disjoint
union, with their own label or index. This can not only be done for two sets, but also for more
sets of course. The disjoint union, or coproduct of sets, can be defined as:∐

a∈A

Xa = {(a, x) | a ∈ A, x ∈ Xa}

For example,

X0 = {4, 5, 6}
X1 = {5, 7}
X2 = {6, 7}∐

a∈{0,1,2}

Xa = {(0, 4), (0, 5), (0, 6), (1, 5), (1, 7), (2, 6), (2, 7)}

In Figure 3, a visualisation can be found of the disjoint union or coproduct of sets.
We can use the coproduct in the definition of the memory. As explained before, the memory Σ
can be defined as partial maps from a set of variable names/locations to their values. Since the
values can be of multiple types, they are elements of different sets, which form the codomain.
The codomain can be defined as the coproduct or disjoint union of these sets. If we only have
integers and strings as types, like we have in level 2 of Hedy, the codomain is Z

∐
A∗ for some

alphabet A. This gives us a definition of the memory Σ of the form:

Σ = [X ⇀
∐

Y ]

9



Figure 3: The disjoint union A
∐

B of the sets A and B is the set formed from the elements
of A and B labelled (indexed) with the name of the set from which they come. So, an
element belonging to both A and B appears twice in the disjoint union, with two different
labels. [Wik22]

3.4 Type Theory

In contrast to set theory, type theory [Pie02, Geu08, Pie04, Tho91] is not built on top of
logic but is instead constructed from the ground up using inference rules. A type theory is
a formal system in which every “term” has a “type”. A “type” in type theory has a role
similar to a “type” in a programming language: it dictates the operations that can be per-
formed on a term and, for variables, the possible values it might be replaced with. We write
a : A if a is a term of the type A. In contrast to set theory, where elements can belong to
several sets, a term usually only has one type. Note that this is the way that types work in
programming languages, when we speak of the type char for characters like the term ‘a’ and
type int for integers like the term 123. Like Python, Hedy has a dynamic type system. We
can use the following notation to be sure of the correctness of certain properties before execution.

v : T ∈ Γ

Γ ⊢ v : T

Here, v is a variable of type T in the context Γ. We can use this notation for our description
of Hedy level 3 and further.
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4 Dafny

Dafny [Lei10] is an imperative and functional compiled language that enables formal specification
through preconditions, postconditions, loop invariants, and loop variants, and compiles to other
programming languages such as C# or Java. The language integrates elements from both
the functional and imperative paradigms, with some object-oriented programming support.
Features include generic classes, dynamic allocation, inductive datatypes, and implicit dynamic
frames [SJP09], a variation of separation logic for reasoning about side effects. Dafny was
created to provide a simple introduction to formal specification and verification, and it has
been widely used in education. Dafny builds on the Boogie intermediate language which uses
the Z3 automated theorem prover for discharging proof obligations [Z3g, dMB08]. Dafny is
frequently included in software verification competitions (e.g. [LM10, KMS+11, BBD+12]).
For other languages than Hedy, Dafny has also been used to implement the semantics. For
example, for a course at Carnegie Mellon University on Automated Program Verification and
Testing, lecture notes show how the language IMP can be implemented in Dafny. [Fre] Dafny
is thus an interesting language for us to use, to create a reference implementation, by making
an implementation based on the semantics of Hedy.
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5 Description of the Syntax and Semantics of Hedy

The starting point for describing the semantics of Hedy, was to gain an overview of the possible
commands in every level and the types to be used with every command. I have done this for all
17 levels of Hedy that existed at that time (now, level 18 is the final level). Apart from the
commands and types per level, the file also contains examples of correct and incorrect Hedy
programs. Because Hedy code is transpiled into Python, the semantics of an Hedy program
is defined in terms of the semantics of the resulting Python code, or, in case of an error, the
resulting HedyException. After completing this informal overview of the semantics of Hedy, a
formal description could be made. For this thesis project, only the first 5 levels are formally
described and implemented, to illustrate a possible approach.

5.1 Informal Syntax and Semantics per level

Here is only the first level given, the complete overview can be found on GitHub [Herb] in the
file SEMANTICS.md. The changes per level are also listed in Section 2.

Level 1

Commands and types
Level 1 supports:

Command Types
print string
ask string
forward integer | empty
turn ‘right’ | ‘left’ | empty
echo string | empty

Table 1: Commands and types supported by Hedy level 1

Correct Programs

Hedy Python
print x y print(‘x y’)

forward t = turtle.Turtle()

t.forward(50)

turn t = turtle.Turtle()

t.right(90)

turn left t = turtle.Turtle()

t.left(90)

turn right t = turtle.Turtle()

t.right(90)

ask x answer = input(‘x’)

ask x answer = input(‘x’)

echo y print(‘y’, answer)

Table 2: Examples of correct programs in Hedy level 1 and the resulting Python code
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Incorrect Programs

Hedy Exception
print Incomplete Exception
ask Incomplete Exception
(forward | turn) text Invalid Argument Type Exception
(not (print | ask | forward | turn | echo)) (any text)? Invalid Exception
any valid line(s) of code not using ask

echo x Lonely Echo
(space) (print | ask | forward | turn | echo) (any text)? Invalid space

Table 3: Examples of incorrect programs in Hedy level 1 and the resulting HedyException

In the complete overview, there are three tables similar to Table 1, 2 and 3 for every level. This
informal description of the semantics has been helpful for creating a formal description, and it
is also useful as documentation for the developers of Hedy.

13



5.2 Big-Step Operational Semantics per level

Level 1

In level 1, there are only 5 possible commands, print, ask, echo, turn, forward. Those
commands cannot all be used in the same way, as shown in the tables with commands and types
per level in the informal description of the semantics, they need to be used with certain types.
To make this formal, we make a grammar, showing what an element c of the set Commands
can consist of. In the grammar, we make sure the commands are used with the proper types
and apart from listing the 5 possible commands, we add sequential composition, because a
program can consist of more than one command. In the the following grammar, s is a string,
so s ∈ A+ for some alphabet A and n is an integer, so n ∈ Z. For sequential composition,
we use a semicolon, for a better readability in the following grammars and derivation rules. In
Hedy code, the semicolon is not used, instead there is a newline. Rectangle brackets mean
[optional]. The epsilon symbol ϵ means ‘empty’, this is needed because the commands turn
and forward can be used without anything else, the turtle will turn with a default amount of
degrees and move forward with a default amount of steps.

c ::= print s | ask s | echo [s] | turn d | forward p | c; c
d ::= ϵ | left | right
p ::= ϵ | n

This grammar shows that commands like the following ones are not possible:

turn around

forward right

The grammar also shows that these commands are possible:

turn left

forward 50

Now that the grammar for level 1 is clear, we need to understand what the effect of these
commands is. To do that, we need to establish an environment. We define that E1 is an
environment which includes certain functions. For the print command, we need a function
that can print a given output, so it takes a non-empty output string and an environment and
returns a changed environment:

print : A+ × E1 → E1

For the command ask, we need to print a question, but since it is printed in a separate box,
we cannot use the same function as the one we use for print. We also need to get an input
from a user. This function should thus take a non-empty output string and an environment
and return the input string and the changed environment:

ask : A+ × E1 → A∗ × E1

The command echo prints something and then repeats the last answer given by the user after
an ask command. So first, we need to check that there has been given an answer (after an
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ask) that can be repeated, for this we have the function echo possible. If the answer exists
and is not empty, add this answer to the string we want to print, and then print it (using the
print function we already have). The echo possible function takes the given input and returns
a boolean, determining whether it is not empty.

echo possible : A∗ → B
The commands turn and forward make a ‘turtle’ move. They both take an integer to
determine how far to move and thus both need a function that takes an integer and changes
the environment:

turn : Z× E1 → E1

forward : Z× E1 → E1

The function, draw, is used for the turtle commands, if there is no turtle yet, this will be
initialised. If there is a turtle already, since there were turtle commands used earlier in the
program, draw is not used again, the turtle only needs to be initialised once.

draw : E1 → E1

In the following example, the functions that need to be used are first draw, then turn and
finally forward. We do not need to use draw for the second command again, because we
keep the same turtle moving and we do not want to add another turtle. This draw function
might seem unnecessary, but it is also what happens in the Python code that Hedy code gets
translated into, to run.

turn left

forward 50

This Hedy code translates to the following Python code:

t = turtle.Turtle()

t.right(90)

t.forward(50)

The attentive readers will have noticed that the turn and forward functions both need an
integer as input, but the command turn is used with left or right or nothing according to the
grammar, and forward can also be used without any integer. We want our d, used with the
command turn, to reduce to an n ∈ Z, and our decision is to use a negative number for turning
to the right and a positive number for turning to the left. This corresponds to the following rules.

(ϵturn)
ϵ ⇓ −90

(leftturn)
left ⇓ 90

(rightturn)
right ⇓ −90

The command forward, optionally uses an integer, but we always want to reduce that to
an n ∈ Z too, whether the number is specifically given or not, so that we can always give a
number to the forward function. For this, we can use the following rules.

(ϵforward)
ϵ ⇓ 50

(num)
n ⇓ n

These rules make sure that for example
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turn

forward

corresponds with

turn right

forward 50

and the functions turn and forward will get -90 and 50 as input respectively.

A state in level 1 needs to include multiple elements. The environment, the answer that was
given by the user after the most recent ask command and a boolean to indicate whether there
is a turtle already or not. Thus, a state in level 1 is of the form:

S1 = E1 × A∗ × B

So for every command c, we want to have rules of the form: < e, s, b, c >⇓< e′, s′, b′ >

Here, e, e′ ∈ E1, s, s
′ ∈ A+, which is the last input/answer a user has given after an ask

command, we use this for the echo command, and b, b′ ∈ B to indicate whether there already
is a turtle or not. 1 means there is a turtle, 0 means there is not. We are still using rectangle
brackets to show something can be empty and a semicolon instead of a newline.

When the command c is of the form printx, the function print is used with string x and
returns a new environment. The last input/answer given by the user does not change and the
boolean to indicate whether there is a turtle also does not change. This gives the following
rule. It says that the state we can find on the left of ⇓ evaluates to the state on the right of
the ⇓ provided that the print function with input (x, e) gives e′ as output.

print(x, e) = e′
(printlvl1)

< e, s, b,printx >⇓< e′, s, b >

When the command c is of the form askx, the function ask is used to print the question x
and the function returns the answer that the user gives. This input/answer is stored as a string,
it may overwrite an older input/answer. In the following rule, the s′ is the input the user gives
and thus the string that the function ask returns, this is thus the string stored in the new state
we can find on the right side of the ⇓.

ask(x, e) = (s′, e′)
(asklvl1)

< e, s, b, askx >⇓< e′, s′, b >

When the command c is of the form echo [x], the function echo possible is used to see if s,
the variable in which the latest answer of the user should be stored, indeed contains something.
It might be the case that there has not been asked a question and that s is still empty. In
that case, we cannot repeat anything and thus the echo cannot be done. This means that
only when echo possible returns true, we can print. If it returns false, a HedyException should
occur. In this description of the semantics and these rules, we do not explicitly show all the
possible HedyExceptions. The exceptions correspond with a failure of evaluating Hedy code
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using our rules. Thus, for echo, we only need a rule for the case that echo possible returns
true and we can actually print something repeating the answer given by user earlier.

echo possible(s) = tt print(x+ s, e) = e′
(echolvl1)

< e, s, b, echo [x] >⇓< e′, s, b >

When the command c is of the form turn d, and we already have a turtle, so our b = 1, we first
need to make sure the d is evaluated to an integer n (using the rules ϵturn, leftturn, rightturn
given earlier), and then we can use that integer for the function turn, as in the following rule.

d ⇓ n turn(n, e) = e′
(turn1lvl1)

< e, s, 1, turn d >⇓< e′, s, 1 >

When the command c is of the form turn d, but we do not have a turtle yet, so our b = 0, we
first need to initialise the turtle using draw. After draw, we get b = 1 and a new environment
e′. The state that this evaluates to using the turn1lvl1 rule we have just defined, is the same
as the state we evaluate to here.

draw(e) = e′ < e′, s, 1, turn d >⇓< e′′, s, 1 >
(turn0lvl1)

< e, s, 0, turn d >⇓< e′′, s, 1 >

When the command c is of the form forward p, we can use similar rules as for turn. First, we
have the case that there is a turtle already, so b = 1. The p is evaluated to an integer n (using
the rules ϵforward and num given earlier), and then we can use that integer for the function
forward, as in the following rule.

p ⇓ n forward(n, e) = e′
(forward1lvl1)

< e, s, 1, forward p >⇓< e′, s, 1 >

When the command c is of the form forward p, but now we have the case that there is no
turtle yet, b = 0, we need to initialise the turtle first, using draw. After draw, we get b = 1
and a new environment e′. The state that this evaluated to using the forward1lvl1 rule we
just defined, is the same as the state we evaluate to here.

draw(e) = e′ < e′, s, 1, forward p >⇓< e′′, s, 1 >
(forward0lvl1)

< e, s, 0, forward p >⇓< e′′, s, 1 >

Last but not least, we need to define a rule for sequential composition. The different commands
are not completely independent after all. If we have two commands c, c′ after each other, the
first command c changes the state and this state has to be the input state for the second
command c′, to again change the state and give us our final state. The input state with the
first command can evaluate to a second state using the rules given so far. The output state is
the input state for the second command and these can then again be evaluated using the rules
given so far. The output state we get is the final one we evaluate to here. (But of course, one
of these commands can again be an instance of sequential composition and this way we can
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continue, evaluating a bigger program.)

< e, s, b, c >⇓< e′, s′, b′ > < e′, s′, b′, c′ >⇓< e′′, s′′, b′′ >
(compositionlvl1)

< e, s, b, c ; c’ >⇓< e′′, s′′, b′′ >

Using these rules, a derivation tree (or prooftree) can be made to show how a Hedy program
can be evaluated. In the implementation of Hedy, exceptions are being used, which correspond
with a failure of evaluating Hedy code using these rules. The same holds for the next levels.
For example, a derivation tree for the following correct program:

turn

forward

would look like this:

draw(e) = e′

(ϵturn)
ϵ ⇓ −90 turn(n, e) = e′

(turn1lvl1)
< e, s, 1, turn >⇓< e′, s, 1 >

(turn0lvl1)
< e, s, 0, turn >⇓< e′, s, 1 > ∗ ∗ ∗

(compositionlvl1)
< e, s, 0, turn; forward >⇓< e′′, s, 1 >

The complete derivation tree does not fit on the page. Replace ∗ ∗ ∗ by the following subtree:

(ϵforward)
ϵ ⇓ 50 forward(n, e) = e′

(forward1lvl1)
< e′, s, 1, forward >⇓< e′′, s, 1 >

Note that the function draw is only used in the left subtree, when we are still evaluating the
first command, turn. For the second command, forward, we do not need draw anymore,
which we know because we changed the b = 0 in our state to b = 1. Also note that the resulting
state after evaluating turn in the left subtree is the same as the initial state in the right subtree.

An example of a derivation tree for an incorrect Hedy program cannot be completed, for
example, in the case there is only an echo, without ask:

echo possible(s) = ff ...
(echolvl1)

< e, s, b, echo >⇓ ...

There is no rule for echo if echo possible returns false, so we cannot get any further. Error!
Another possible incorrect program would be when turn is used with an integer or text other
than left or right. Or forward with any text. For example, when the Hedy program looks like:

forward jump

it would give the following tree:
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draw(e) = e′
jump ⇓ ... forward(..., e) = ...

(forward1lvl1)
< e, s, 1, forward jump >⇓ ...

(forward0lvl1)
< e, s, 0, forward jump >⇓ ...

Since ‘jump’ cannot be evaluated to an integer, the forward function cannot be used and
thus we cannot evaluate this program.
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Level 2

In level 2, variables are introduced, using the new command is. This makes echo unnecessary,
because we can repeat given input if we store it in a variable. So echo disappears and for ask,
we need to store the answer the user gives in a variable ourselves using ... is ask .... This
means that ask cannot be used separately anymore, it is always combined with is, to make
sure the variable is stored. For example:

name is ask What is your name?

The command sleep is also introduced. Thus, we have the following grammar for any c ∈
Commands, with s ∈ A+ for some alphabet A, n ∈ Z and a semicolon instead of a newline.
Now that we have variables, we also have a set of possible variable names, or locations in which
values can be stored, called Loc. Here, v ∈ Loc.

c ::= print s | v is ask s | v is s | turn o | forward o | sleep o | c; c

o ::= ϵ | n | v

The grammar shows that turn and forward can now be used with a variable, an integer or
nothing, which is different from level 1. For turn, ‘left’ and ‘right’ are not used anymore.

Now that we have variables, it is time to take a better look at the type system. In level 2, we
only work with strings and integers.

T ::= String | Integer

An element of a certain type is an element in a certain set.

sem : Type → Set

In the case of a string, it is an element of some alphabet A∗ and in the case of an integer, it is
an element of Z.

sem(String) = A∗

sem(Integer) = Z

The memory Σ2 is where we find the values of our variables. A given location or variable name
v ∈ Loc will map to an element of one of the aforementioned sets. The incomplete arrow ⇀
means that it is a partial map, explained in Section 3.3.1. The

∐
sign means ‘coproduct’, or

disjoint union, also explained further in Section 3.3.2. This definition of the memory Σ2 makes
sure that a variable will consist of a value of one type, string or integer in our case, but not
both, so it will be an element in the alphabet A∗ or in the set Z, but not both.

Σ2 = [Loc ⇀
∐

t∈Type

sem(t)]
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We define that E2 is an environment which includes E1 except echo possible, and also includes
some new functions. The functions we still have from level 1 are print, ask, turn, forward
and draw. The first new function is upd, which we need for the command is, the assignment
of values to variables, or the ‘update’ function. It needs the variable name/location, the value
and the memory and returns the new memory in which the given value then should be stored in
the right location. It can be stored as a string, it can be converted to an integer later if needed.

upd : Loc× A+ × Σ2 → Σ2

The second new function is sleep, for command sleep. It takes an integer and should make
sure the program ‘sleeps’ (does nothing) for the amount of time indicated by the integer.

sleep : Z× E2 → E2

The third and fourth new functions are substStr and substInt. When we want to print a string,
the variables need to be replaced by what is stored in that variable. The function thus needs a
string and the memory as input and gives back a new string, in which the variables should be
substituted by their values. This means that substStr takes a string in which there may be
one or more variables used and memory and returns the new string in which those variables are
replaced. When a variable is used with turn, forward or sleep, it should be replaced by an
integer. This means that substInt should get exactly one variable name/location and, together
with the memory, returns an integer.

substStr : A∗ × Σ2 → A∗

substInt : Loc× Σ2 → Z

We have three commands which can optionally be used with a number, turn, forward and
sleep. To make sure the functions we use for these commands will always get a number, we
can still use rules (num), ϵturn and ϵforward from level 1, and add the following rule.

(ϵsleep)
ϵ ⇓ 1

The rules we already have for the different commands used in level 1 need to be adjusted,
because we do not have the echo command anymore, which means we do not need rules of
this form anymore:

< e, s, b, c >⇓< e′, s′, b′ >

because the s was to remember the last input the user gave us. We now have to take variables
into account. A state in level 2 is of the form:

S2 = E2 × B× Σ2

Now, for every command c, we want to have rules of the following form, with e, e′ ∈ E2,
b, b′ ∈ B to indicate whether there already is a turtle or not (1 means there is a turtle, 0 means
there is not) and σ, σ′ ∈ Σ2.

< e, b, σ, c >⇓< e′, b′, σ′ >
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The adjusted rules from level 1 are as follows. For a command c of the form printx, we cannot
immediately print the string x with the function print, but we need to replace variables by
their values first. For that, we will introduce a substitution rule (substStrlvl2) later, for now
we can say that the string x, together with the memory σ should evaluate to a certain string
x′ and that should be the one we print.

< x, σ >⇓String x
′ print(x′, e) = e′

(printlvl2)
< e, b, σ,printx >⇓< e′, b, σ >

From this level on, ask can no longer be used on its own, but only always in combination with
is. We can thus see is ask as one construction, instead of a combination of two constructions.
Normally, we would first want to substitute the variables in the question for their values, but
Hedy does not support this functionality yet, so in this description of the semantics, I will
not include this, the description should correspond with the current behaviour of Hedy. Later
on, an addition might be necessary, similar to the addition in the rule for print. Thus, if the
command c is of the form x is ask y, we skip the substitution step and immediately use the
ask function, which outputs the given question y and reads an input from the user. This input
should then be stored in the given variable location x, for this we use the update function upd.
The state we end up in has a changed environment and changed memory.

ask(y, e) = (s, e′) upd(x, s, σ) = σ′

(asklvl2)
< e, b, σ, x is ask y >⇓< e′, b, σ′ >

When the command c is of the form turn o, and b = 1, meaning that this is not the first
turtle command used, so there is a turtle already and we do not need to use draw to initialise
one, we first need to make sure the command is used with an integer, just like in level 1. The
difference is that we can now also have a variable in which an integer is stored. This means
that we need to see if o is empty, an integer or a variable with a value of type integer. For this,
we will define a rule (substIntlvl2) later, for now, we can say that o, together with the memory
σ should evaluate to a certain integer n, similar to what we did for the new (printlvl2) rule.

< o, σ >⇓Integer n turn(n, e) = e′
(turn1lvl2)

< e, 1, σ, turn o >⇓< e′, 1, σ >

When the command c is of the form turn o and b = 0, meaning that there have not been turtle
commands earlier, so we do not have a turtle yet, we first need to use draw to initialise the
turtle. Then we can use the new (turnlvl2) rule we just defined, similar to what we did in level 1.

draw(e) = e′ < e′, 1, σ, turn o >⇓< e′′, 1, σ >
(turn0lvl2)

< e, 0, σ, turn o >⇓< e′′, 1, σ >

When the command c is of the form forward o and b = 1, we do not need draw and just
like for turn, we first need to make sure the command is used with an integer. This can
again be a variable, different from level 1. As already mentioned, later on, we will define a rule
(substIntlvl2) that substitutes the variable for its value of type integer. Here, we can say that
o, together with the memory σ should evaluate to a certain integer n, which can then be used
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for the forward function in this case.

< o, σ >⇓Integer n forward(n, e) = e′
(forward1lvl2)

< e, 1, σ, forward o >⇓< e′, 1, σ >

When the command c is of the form forward o and b = 0, meaning that there have not been
turtle commands earlier, so we do not have a turtle yet, we first need to use draw to initialise
the turtle. Then we can use the new (forwardlvl2) rule we just defined, similar to what we did
for turn.

draw(e) = e′ < e′, 1, σ, forward o >⇓< e′′, 1, σ >
(forward0lvl2)

< e, 0, σ, forward o >⇓< e′′, 1, σ >

For sequential composition, the only change is that the states are different, instead of the input
string we now have memory, but everything still works the same as in level 1.

< e, b, σ, c >⇓< e′, b′, σ′ > < e′, b′, σ′, c′ >⇓< e′′, b′′, σ′′ >
(compositionlvl2)

< e, b, σ, c; c′ >⇓< e′′, b′′, σ′′ >

The new rules for this level are as follows. When the command c is of the form x is y, the
memory σ needs to be changed such that at location x, we have the value y. For this, we use
the upd function. Only the memory changes.

upd(x, y, σ) = σ′

(islvl2)
< e, b, σ, x is y >⇓< e, b, σ′ >

When the command c is of the form sleep o, similar to turn and forward, we first need to
make sure the o is an integer. It can be empty, in which case it will evaluate to 1, given by the
(ϵsleep) rule, or it is an integer, in which case we can use (num), but if it is a variable, we need
to use (substIntlvl2), which we will define soon. For this rule, similar to the rules for turn
and forward, we can just state that the o, together with the memory σ evaluates to a certain
integer n. This integer can than be used for the function sleep.

< o, σ >⇓Integer n sleep(n, e) = e′
(sleeplvl2)

< e, b, σ, sleep o >⇓< e′, b, σ >

The final rules we need for this level, already mentioned before and long waited for, are
substStrlvl2 and substIntlvl2. substStrlvl2 makes sure that all the variables that may be present
in string x will be replaced by their values and gives back the complete string. substIntlvl2
however, takes one variable name/location x and gives the integer value.

substStr(x, σ) = x′

(substStrlvl2)
< x, σ >⇓String x

′

substInt(x, σ) = x′

(substIntlvl2)
< x, σ >⇓Integer x

′
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Level 3

In level 3, lists are introduced. Lists can be used with the new commands at random, which
chooses a random element from a list, add to which adds an element to a list and remove
from which removes an element from a list. The addition of lists also changes how commands
we already had can be used. Since the command at random chooses a random element from
a list, this can be done in combination with print for example:

animals is dog, cat, kangaroo

print animals at random

Running this Hedy program, only one of the three animals in the list will be printed. We can
not yet print a whole list, but we can print a random element of a list like that. We would
want ask to work in a similar way, but it does not work yet in the current implementation of
Hedy, so we decided to make this description of the semantics of Hedy correspond with how
Hedy works now and thus the is ask construction will only work with a string and not with at
random. The commands turn, forward and sleep can also be used in combination with lists
and at random, if the list consists of integers. What type of elements a lists should consist
of is not specified in the grammar, this will be made sure later, in the type system. It is also
always needed to store the list in a variable location, before using it with at random, add to
or remove from. For example, this is not possible:

dog, cat, kangaroo at random

This means that we say in the grammar that the commands at random, add to and
remove from work with variables and later on in the type system, we make sure that
the values of the variables are lists. This gives us the following grammar for level 3.

c ::= printu | v is ask s | v isu | turn o | forward o | sleep o

| add s to v | remove s from v | c; c
o ::= ϵ | n | v | v at random
u ::= s | n | v at random
l ::= m,m | l,m

m ::= n | s

Here, as before, s is a string, so s ∈ A+ for some alphabet A, n ∈ Z, v ∈ Loc and now we also
have l ∈ ListT (lists with elements of type T , in this level list of strings or lists of integers).
We have to add lists to the type system of level 2 for the type system of level 3. We now have
strings, integers and lists.

T ::= String | Integer | ListT

An element of a certain type is in a certain set.

sem : Type → Set

In the case of a string, it is an element of A+, for some alphabet A. In the case of an integer,
it is an element of Z. A list is of type Z∗ if the elements of the list are integers and (A+)∗ if
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the elements of the list are strings. For the lists, this can be generalised to sem(T )∗ in which
T is an integer or a string.

sem(String) = A∗

sem(Integer) = Z
sem(ListT ) = sem(T )∗

The memory Σ3 is where we find the values of our variables. The notation of the definition
of Σ3 is exactly the same as for level 2, Σ2, but since we have added lists to the set Type,
the definition is not exactly the same. A given location or variable name v ∈ Loc will map
to an element of one of the aforementioned sets, so it is an element of A∗,Z or sem(T )∗,
because the value of the variable then is of type string, integer or list respectively. As mentioned
in level 2, ⇀ denotes a partial map and

∐
means coproduct or disjoint union, explained in

Section 3.3.1 and Section 3.3.2 respectively. This definition of the memory Σ3 makes sure
that a variable will consist of a value of one type, string, integer or list in this case, but not
multiple types. It also makes sure that the lists consist of only integers or only strings, so the
lists cannot consists of elements of different types. In the grammar, we did not specify this yet,
but this is now solved in the type system.

Σ3 = [Loc ⇀
∐

t∈Type

sem(t)]

The type system also includes the rules given below. The first rule states the following. If a
random element of a list v, given by v at random, is of type T , then the list v is of type
ListT . The second rule states that print is used with a string. The third rule says that using
is ask, both the variable name and the question are of type string. This is correct, because
Loc ⊂ A∗. The fourth rule says that using is, both the variable name and the value are of type
string. This is correct, because the variable name is an element of Loc again, and Loc ⊂ A∗.
The value can be stored as a string and later on be converted to an integer or list if needed. The
fifth, sixth and seventh rule make sure that respectively turn, forward and sleep can only
be used with an integer. The eighth and ninth rule make sure that add to and remove from
can only be used with a list and a string to add to or remove from that list. The elements of
lists can be converted to integers when needed (and if we can convert an element of a list to
an integer, we can do that with the other elements of the same list as well). The tenth rule is
a very general rule, with the eleventh rule as an example using a list instead of the general T .
For more information on type systems, see Section 3.4.

v : ListT ∈ Γ

Γ ⊢ v at random : T

u : String ∈ Γ

Γ ⊢ printu

s, t : String ∈ Γ

Γ ⊢ s is ask t

s, u : String ∈ Γ

Γ ⊢ s isu

u : Integer ∈ Γ

Γ ⊢ turnu

u : Integer ∈ Γ

Γ ⊢ forwardu

u : Integer ∈ Γ

Γ ⊢ sleepu

s : String, l : ListT ∈ Γ

Γ ⊢ add s to l

s : String, l : ListT ∈ Γ

Γ ⊢ remove s from l

v : T ∈ Γ

Γ ⊢ v : T

l : ListT ∈ Γ

Γ ⊢ l : ListT
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We define E3 as an environment which includes the same functions as E2 and also includes
some new functions. The functions we still have from level 1 and 2 are print, ask, turn,
forward, draw, upd, sleep, substStr and substInt. The update function has to be adjusted
though, since we now have lists. For level 2, we said:

upd : Loc× A+ × Σ2 → Σ2

Thus, every variable was assigned as a string and we could convert it to an integer if needed later.
We cannot do this with lists, we are now actually going to assign values as the corresponding
type (integer, string or list) to the variable names/locations. We get:

upd : Loc× sem(T )× Σ3 → Σ3

The following new functions are needed for the commands that have to do with lists. The
function random takes a list and the environment and returns one of its elements and the new
environment. The function addto takes an element and a variable location (where a list should
be stored) and the memory, and maps to a new list (not the location!) in which this element is
added. Finally remove takes an element, a variable location (where a list should be stored)
and the memory as well and maps to a list in which this element is removed if it was present in
the initial list.

random : sem(T )∗ × E3 → sem(T )× E3

addto : A+ × Loc× Σ3 → (A+)∗

remove : A+ × Loc× Σ3 → (A+)∗

A state in level 3 is of the form S3 = E3 × B× Σ3

For every command c, we want to have rules of the form: < e, b, σ, c >⇓< e′, b′, σ′ >

Here, e, e′ ∈ E3, b, b
′ ∈ B to indicate whether there already is a turtle or not. 1 means there is

a turtle, 0 means there is not, and σ, σ′ ∈ Σ3.
The new rules are as follows. For a command c of the form add s to v, if the function addto
given the element to add s, the location of the list v and the memory σ as input returns a list
l′, and function upd given input l, l′ and the memory σ returns memory σ′, then this σ′ is the
new memory in our state. The other elements of the state are unchanged.

addto(s, v, σ) = l′ upd(v, l′, σ) = σ′

(addtolvl3)
< e, b, σ, add s to v >⇓< e, b, σ′ >

For a command c of the form remove s from v, this works similar to the formal one. The
function remove takes s, v and σ and returns a new list and with the function upd this new
list is stored in the location of the old list and returns the changed memory. This changed
memory σ′ is the only thing that changes in the state.

remove(s, v, σ) = l′ upd(v, l′, σ) = σ′

(removelvl3)
< e, b, σ, remove s from v >⇓< e, b, σ′ >
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For any command used with at random, we need a rule that can evaluate v at random to
a string or integer, depending on the command it is used in combination with. The rules for
the other commands do not need to change for this, because they use the fact that certain
things need to evaluate to something else of a certain type in order to evaluate the commands.
For example, if it is turn, forward or sleep, it has to evaluate to an integer (if not, it will
result in an HedyException) and this is also given in the rules (see level 2). The rule below
denotes that v at random evaluates to t of type T if the function random given v returns
t. The environment e is also needed, because the random generator depends on the environment.

random(v, e) = (t, e′)
(randomlvl3)

v at random ⇓T t
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Level 4

In level 4, there are new syntax rules (we need to use ‘’ around text when we print or ask
something, except for variables). For example, in level 3, this would be a correct program:

print You do not need to use quotation marks yet

answer is ask What do we not yet need to use?

print We do not need to use answer

In the final line, the word answer will be replaced by the input given by the user. In level 4, to
achieve a similar program, this would be the correct syntax:

print ‘You need to use quotation marks from now on!’

answer is ask ‘What do we need to use from now on?’

print ‘We need to use ’ answer

If the quotes would not be used, it would result in a HedyException. If the closing quote in
the final line would be after answer instead of before answer, it would not be replaced, but
printed literally. Everything between the quotes is seen as plain text and outside the quotes,
the words should be names of variables. This way, words used as variable names can also be
printed. For example, in level 3,

name is Hedy

print my name is name

would give the following output:

my Hedy is Hedy

but in level 4, because of the quotation marks, we can use the following code:

name is Hedy

print ‘my name is ’ name

which will result in:

my name is Hedy

The only change made in level 4 are thus the quotation marks, to make a difference between
plain text and variables when printing or asking something, which is a change in the syntax.
This means there are not changes in the semantics. E4 = E3, Σ4 = Σ3, we have the same rules
and axioms. It does mean though, that the function substStr will work slightly different. It still
takes a string and the memory and returns a new string in which variables should be replaced
by their values, but the function does not have to check the whole string for variables anymore.
The parts between quotes can be skipped and the other parts should contain variables and be
replaced by their values. This does not change anything for the derivation rules we have, but it
does change the implementation of substStr, which is not specified here, but it can be found
in the in the appendix in the implementation in Dafny.
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Level 5

In level 5, if and if else is added to the possible commands. Command is can now not only be
used for assignment, but also for comparison of strings. It is also possible to check if something
is an element of a list with in. For example:

name is ask ‘what is your name?’

if name is Hedy print ‘cool!’ else print ‘meh’

Here, is is used as before, for assignment, in the first line and in the second line, is is used for
comparison. In the next example, we have is again for assignment and the if-condition is now
using in to see if something is an element of a list:

pretty_colors is green, yellow

color is ask ‘What is your favorite color?’

if color in pretty_colors print ‘pretty!’

else print ‘meh’

The addition of these possibilities gives us the following new grammar for level 5:

c ::= printu | v is ask s | v isu | turn o | forward o | sleep o | add s to v | remove s from v

| if b then c | if b then c else c | c; c
o ::= ϵ | v | n | v at random
u ::= s | n | v at random
m ::= n | s
l ::= m,m | l,m
b ::= s in v | m ism

Here, as before, s is a string, so s ∈ A+ for some alphabet A, n ∈ Z, v ∈ Loc, l ∈ ListT
(lists with elements of type T ) and now we also have b ∈ B. In the syntax of Hedy, then is
actually not used for if then else, but only if else. To make it completely clear what the
if-condition is and what the command to be executed is (if the condition is true), I have added
a then. Obviously, we have a new type now, the boolean, which we need for the if-conditions.
This gives us:

T ::= String | Integer | ListT | Boolean

Just like with the other types, an element of type boolean is the element of a set, in this case:

sem(Boolean) = {tt,ff}

To denote that the if-conditions always have to be of type boolean, we have the following rule,
in addition to the rules given in level 3.

b : Boolean ∈ Γ

Γ ⊢ if b
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We define E5 as an environment which includes all functions from E4 = E3, and also includes
the following new functions. The function eq takes two elements of type T , so of the set
sem(T ) and returns a boolean, true if they are equal and false if they are not. A HedyException
occurs if the types of the elements make them incomparable. The function elem takes an
element and a list and returns true if the element occurs in the list and false if it does not.

eq : sem(T )× sem(T ) → B
elem : sem(T )× sem(T )∗ → B

A state in level 5 is of the form:
S5 = E5 × B× Σ5

We can use the rules from level 3 (= 4) and we add some rules, of the same form as before,
for our new commands. The new rules are as follows. For the evaluation of the if-conditions,
we need rules for both forms that the if-conditions can have at this level. The two possible
forms the if-condition can have are x is y for equality comparison and x in y for checking the
occurrence of an element in a list, both should evaluate to true or false, depending on the
output of the corresponding function, eq and elem respectively. The two rules are:

eq(x, y) = b
(eqlvl5)

x is y ⇓ b

elem(x, y) = b
(elemlvl5)

x in y ⇓ b

Now that we can evaluate the if-condition, we still need rules for what to do if we have an
if-statement and we know the outcome of the if-condition. In the case that the if-condition
evaluates to false, and the if-statement is of the form if b then c, without an else, we should
not execute command c, which means that we do nothing and our state does not change. This
gives us the following rule.

b ⇓ ff
(if − fflvl5)

< e, bt, σ, if b then c >⇓< e, bt, σ >

In the case that the if-condition evaluates to true however, and the if-statement is of the form
if b then c (without an else), we have to execute c and the state will change depending on c.
This gives us the following rule.

b ⇓ tt < e, bt, σ, c >⇓< e′, b′t, σ
′ >

(if − ttlvl5)
< e, bt, σ, if b then c >⇓< e′, b′t, σ

′ >

In the case that the if-condition evaluates to false, but now there is an else, so the form of
the if-statement is if b then c else c′, we have to execute c′. The state will change depending
on c′. This gives us the following rule.

b ⇓ ff < e, bt, σ, c
′ >⇓< e′, b′t, σ

′ >
(if − else− fflvl5)

< e, bt, σ, if b then c else c′ >⇓< e′, b′t, σ
′ >
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The final case is that the if-condition evaluates to true and the if-statement is of the form
if b then c else c′. We need to execute the c and not the c′. The state will change depending
on c. This gives us the following rule.

b ⇓ tt < e, bt, σ, c >⇓< e′, b′t, σ
′ >

(if − else− ttlvl5)
< e, bt, σ, if b then c else c′ >⇓< e′, b′t, σ

′ >

To illustrate what a derivation tree / prooftree could look like using these rules, we have the
following example. This Hedy program:

name is Hedy

if name is Hedy print ‘nice’

assuming that the user would give the input-string ‘Hedy’, gives this tree:

upd(name,Hedy, σ) = σ′

(islvl2)
< e, 0, σ, name isHedy >⇓< e, 0, σ′ > ∗ ∗ ∗

(compositionlvl2)
< e, 0, σ, name isHedy; if name isHedy thenprint ‘nice’ >⇓< e′, 0, σ′ >

The complete derivation tree does not fit on the page. Replace ∗ ∗ ∗ by the following subtree:

eq(name,Hedy) = tt
(eqlvl5)

name isHedy ⇓ tt

< ‘nice’, σ′ >⇓String ‘nice’ print(‘nice’, e) = e′
(printlvl2)

< e, 0, σ′,print ‘nice’ >⇓< e′, 0, σ′ >
(if − ttlvl5)

< e, 0, σ′, if name isHedy thenprint ‘nice’ >⇓< e′, 0, σ′ >

Note that the left subtree evaluates a command including is with the (islvl2) rule, for assignment,
while in the right subtree, we need the (eqlvl5) rule for equality comparison, for a command
including is. Also note that the resulting state after evaluating the first line of the code in the left
subtree is the same as the initial state in the right subtree evaluating the second line of the code.

Now, we can evaluate all correct programs in Hedy code level 1-5 using derivation trees,
constructed by our rules. If the evaluation of a Hedy program fails, there is an error in the code
and an HedyException should occur.
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5.3 Implementation of Semantics of Hedy in Dafny

Using the formal description of the semantics of level 1 to 5, the semantics could be implemented
in Dafny. The goal is to generate tests. The Dafny code can be compiled to other languages,
in this case, C# has been used. The Dafny code can be found in the appendix and both the
Dafny and the C# code can be found on GitHub [Bol]. For the implementation in Dafny, traits
have been used [ALN15]. Traits are abstract superclasses, which make it possible to describe
behaviour common to several classes and to write code that abstracts over the particular classes
involved. There is a separate file per level. The only difference between level 3 and 4 is the
method substStr, which works slightly different because of the addition of quotes around text in
level 4. Before we can use the Dafny code as reference implementation, we need to prove certain
properties, so that we know for sure the Dafny code is correct. First attempts to proving those
properties for level 1 can also be found on GitHub [Bol]. The properties we want to prove are
the ones we want to test to make sure that the implementation of Hedy behaves in the way we
want. If we prove those properties in the implementation in Dafny, we know these also hold in
the compiled C# code and then we can use it as a reference implementation and generate test
cases. The testcases should run in the generated C# code and be translated to Python to test
the Hedy code. Then, the behaviours of the two implementations can be compared. Because
of the proven properties, we know that the behaviour we get from running the testcases in C#
is correct. If it does not correspond with the behaviour from the implementation of Hedy in
Python, we know that there is a mistake in the implementation of Hedy, and preferably, even a
counterexample can be given [CFRR22], to show the case in which the behaviour differs from
the wanted behaviour.
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6 Uncovered issues in Hedy

Creating a description of the semantics of Hedy already uncovered multiple issues.

1. In level 14, comparisons are added. Listing all the possible commands and their types,
uncovered that the equality comparison and the inequality comparison could not be used
for exactly the same types. The types allowed for equality (==) were only integer, float
and string, while for not-equal (!=), also lists were possible.

2. When using an if/else-statement to create a variable which is a string in one case and a
list in the other, making sure it will be the string-case, but afterward printing it with at
random as a list, we get weird behavior. It seems that Hedy sees the string as a list of
characters and it prints a random character of this string (including the quotes) instead
of giving an error that it is not possible to print a string at random, that this can only
be used for a list. At first, this issue seemed too hard (and not important enough) to fix,
but it has been solved now.

3. While this was no problem for the command forward, the command turn could not be
used with a negative number. This has been solved.

4. In level 3, lists can be used, with, among others, command at random to choose a
random element of a list. This command would be used in combination with other
commands. It should work in combination with ask for example, but this did not work,
while it did in combination with print for example.

5. In level 10, repeat and for both worked, but from level 11 on, only for worked. After
discussing this with the creator of Hedy, Felienne Hermans [Hera], the following decisions
were made. The description of the semantics should correspond / be consistent with how
Hedy works currently, with repeat not possible in level 11 and further. Later on, repeat
should be added in level 11 and further, but that might take a while.

6. Similar to the fourth issue, in level 3, at random should, but could not, be used in
combination with sleep. This issue has been solved already.

For a more detailed explanation of the issues (and their solutions), the issues can be found
on GitHub [Herb]. Some of the issues have been solved already. The issues found while de-
scribing the semantics are issues #1813, #1924, #1927, #1938, #1942 and #2431 respectively.

For another small improvement on Hedy, creating a new issue was not necessary, but a new
pull request could immediately be made to make the change: Listing the possible commands
per level made clear that in level 14, not every new command was explained in the text. The
comparisons <, >, == and ! = had been explained, but <= and >= not yet, while these
comparisons could also be used in this level. An explanation for these final two comparisons was
added using a pull request, without first creating an issue. (Pull requests #1816 and #1820)
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7 Conclusions and discussion

The goal of this research project was to help improve the Hedy programming language. Hedy
is being developed for education, using a new approach inspired by natural language education.
Hedy consists of multiple levels, starts very simple and adds programming concepts or syntax
rules gradually. These multiple levels can all be seen as their own language and have their
own semantics. The semantics of a language describes the behaviour of programs in that
language or the language as a whole, it gives meaning to the syntax. Formally describing the
semantics of a language helps to improve it, by finding unwanted or illogical behaviours. Dafny
can be used to implement semantics and compile it to other programming languages, for a
reference implementation. Having a reference implementation of how a language should work
is helpful for the people still developing Hedy and might uncover issues. The research question
that follows is: How can we uncover issues in the implementation of the Hedy programming
language, by providing a formal description of its semantics and a formalised implementation?

As discussed in Section 6, issues have been uncovered, by describing the semantics of Hedy.
First, describing the semantics informally and only checking which commands with which types
are supported by every level, already helped to find issues. Then, describing the semantics
formally, more issues were found. Hopefully the implementation of the semantics of Hedy in
Dafny will also help find more issues in the future.

7.1 Future work

The Hedy language currently consists of 18 levels, of which now only the semantics of the first
5 levels have been described. To complete the description, the other levels can be described.
It is also important to note that Hedy is still being improved, so that the transitions to new
levels will be as easy as possible for children using it. This means that the description of the
semantics given in this thesis will very likely not be accurate in the future. When expanding the
description of the semantics of Hedy, not only the higher levels should be added, but possibly
the first 5 levels should also be adjusted.

If there is a complete description on paper, a complete implementation in Dafny could be made.
The goal would be to use this as a reference implementation, in which we can prove certain
properties. When these properties are proven in the Dafny code, testcases can be generated,
to run in the generated C# code. For this, another language could also be used, it does not
necessarily have to be C#, Dafny can also generate Java for example. There would also still
have to be made a translation to Python, because Hedy is implemented (and tested) with
Python code. (Currently, Dafny cannot generate Python.) Then, ouputs/behaviours can be
compared. Because of the proven properties, we know that the behaviour we get from running
the testcases in C# is correct. If this behaviour does not correspond, we know there is a mistake
in the implementation of Hedy. Preferably, a counterexample can be given [CFRR22], to show
in which case the behaviour is different from the wanted behaviour.
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7.2 Limitations

The approach chosen to answer the research question might not have been the easiest one. A
reference implementation is helpful to test software, because of the certainty that this reference
implementation is correct. To be sure this reference implementation is correct, certain properties
need to be proven first. Proving these properties to make sure the reference implementation
is correct, can be done in Dafny, but working with input and output makes this a non-trivial
job. Another approach could have been to implement the semantics of Hedy in any language
and compare this, without being sure that the implementation based on the semantics is
error-free. When comparing the behaviours, there is a difference, it would not be clear in which
implementation there is a problem. It would be necessary to check both implementations, to
be sure which is the correct/wanted one. This might be a disadvantage, but not a very big
one, because it seems this second approach might still be less work, since it skips the step of
proving properties in the implementation based on the semantics.

A different limitation to this project is that the formal description of the semantics of Hedy and
the implementation based on that in Dafny does not always correspond with the wanted/intended
behaviour of Hedy. Instead, we chose to make sure the description and implementation
correspond with the current behaviour of Hedy, but some details should change in the future.
For example, the fourth issue in Section 6 made clear that the command ask can only be used
to ask questions in plain text, but not in combination with at random or variables in general,
while it is possible with the command print. The preferred behaviour of ask would be for it to
work similar to print. We found this issue because of this project, when this issue is solved, the
semantics description and implementation should be adapted. For the informal description of
the semantics, even more things should probably be changed in the future. For example, in
level 10, the repeat command and the for command both work, but from level 11 on, repeat
does not work anymore, we have to use for. This is consistent with the informal description
now, but later on, the developers of Hedy might want to change this and keep repeat possible.
This would be something to take into account if this project would be continued and the higher
levels would be described and implemented.

7.3 Conclusion

This thesis provides an approach to describing the formal big-step operational semantics of
the Hedy programming language, a gradual programming language for education. Since Hedy
consists of multiple levels, the semantics of one level can be described separately, as if it is an
independent language. This way, the first 5 levels have been described. This helped uncover
issues in the implementation of Hedy, listed in Section 6. Based on this description of the
semantics of Hedy, the semantics of level 1 to 5 have also been implemented in Dafny. Hopefully,
this will help improve Hedy further in the future.
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Appendix

A: Dafny implementation of Level 1

1 // Level 1

2

3 datatype Com1 = Print ( string )
4 | Ask ( string )
5 | Echo ( string )
6 | Turn (D )
7 | Forward (P )
8 | Seq (Com1 , Com1 )
9

10 // Used for command turn

11 datatype D = Empty

12 | Left

13 | Right

14

15 // Used for command forward

16 datatype P = Empty

17 | N ( i n t )
18

19 datatype Maybe<T> = Nothing | Just ( elem : T )
20

21 trait Env1

22 {
23 var store : Maybe<string> // remember the answer after ask

24 var turtle_exists : bool
25 method Print ( output : string ) modifies t h i s
26 method Ask ( question : string ) returns ( input : string ) modifies

t h i s
27 method Error ( exception : string ) modifies t h i s // echo without ask

28 method Turn ( angle : i n t ) modifies t h i s
29 method Forward ( step : i n t ) modifies t h i s
30 method Draw ( ) modifies t h i s
31 }
32

33 type Config1 = (Com1 , Env1 )
34 type Derivation1 = seq<Config1>
35

36 // Used for command turn

37 function method bigstep_D_level1 (d : D ) : i n t
38 {
39 match (d ) {
40 case Empty => −90
41 case Left => 90
42 case Right => −90
43 }
44 }
45
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46 // Used for command forward

47 function method bigstep_P_level1 (p : P ) : i n t
48 {
49 match (p ) {
50 case Empty => 50
51 case N (n ) => n

52 }
53 }
54

55 method bigstep_level1 (c : Com1 , e : Env1 )
56 modifies e

57 {
58 match (c ) {
59 case Print (x ) =>
60 e . Print (x ) ;
61 case Ask (x ) =>
62 var answer := e . Ask (x ) ;
63 e . store := Just ( answer ) ;
64 case Echo (x ) =>
65 match (e . store ) {
66 case Nothing => e . Error ( ” echo w i thout ask ” ) ;
67 case Just (s ) => e . Print (x+s ) ;
68 }
69 case Turn (x ) =>
70 i f (e . turtle_exists == f a l s e ) {
71 e . Draw ( ) ;
72 e . turtle_exists := true ;
73 }
74 e . Turn ( bigstep_D_level1 (x ) ) ;
75 case Forward (x ) =>
76 i f (e . turtle_exists == f a l s e ) {
77 e . Draw ( ) ;
78 e . turtle_exists := true ;
79 }
80 e . Forward ( bigstep_P_level1 (x ) ) ;
81 case Seq (c1 , c2 ) => {
82 bigstep_level1 (c1 , e ) ;
83 bigstep_level1 (c2 , e ) ;
84 }
85 }
86 }
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B: Dafny implementation of Level 2

1 // Level 2

2

3 datatype Com2 = Print ( string )
4 | IsAsk ( string , string )
5 | Assign ( string , string )
6 | Turn (O2 )
7 | Forward (O2 )
8 | Sleep (O2 )
9 | Seq (Com2 , Com2 )

10

11 datatype O2 = Empty

12 | N ( i n t )
13 | V ( string )
14

15 type Mem2 = map<string , string> // Loc = string, value string,

converteren voor int (onderaan)

16

17 trait Env2

18 {
19 var turtle_exists : bool
20 var sigma : Mem2 // memory var-val

21 method Print ( output : string ) modifies t h i s
22 method Ask ( question : string ) returns ( input : string ) modifies

t h i s
23 method Turn ( angle : i n t ) modifies t h i s
24 method Forward ( step : i n t ) modifies t h i s
25 method Draw ( ) modifies t h i s
26 method Assign ( variable : string , value : string ) modifies t h i s
27 {
28 sigma := sigma [ variable := value ] ;
29 }
30 method Sleep ( time : i n t ) modifies t h i s
31 method SubstText ( plaintext : string ) returns ( valuestext : string )

modifies t h i s
32 {
33 var indexbegin := | plaintext | + 1 ;
34 var indexend := | plaintext | + 1 ;
35 f o r i := 0 to | plaintext | {
36 f o r j := i to | plaintext | {
37 i f ( plaintext [ i . . j ] in sigma ) {
38 indexbegin := i ;
39 indexend := j ;
40 valuestext := valuestext + sigma [ plaintext [ i . . j

] ] ;
41 }
42 }
43 i f (i < indexbegin | | i > indexend ) { // now we can be

sure that there is no var at index i
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44 valuestext := valuestext + [ plaintext [ i ] ] ;
45 }
46 }
47 }
48 method SubstNumber ( name : string ) returns ( number : i n t ) modifies

t h i s
49 {
50 i f ( name in sigma && | sigma [ name ] | > 0)
51 {
52 var temp := strToInt ( sigma [ name ] ) ;
53 match ( temp ) {
54 case Just (n ) => number := n ;
55 case Nothing => Error ( ” not a number” ) ;
56 }
57 }
58 e l s e {
59 Error ( ” not a v a r i a b l e ” ) ;
60 }
61 }
62 method Error ( exception : string ) modifies t h i s // turn,forward,

sleep used with string instead of int

63 }
64

65 type Config2 = (Com2 , Env2 )
66 type Derivation2 = seq<Config2>
67

68 method bigstep_level2 (c : Com2 , e : Env2 )
69 modifies e

70 {
71 match (c ) {
72 case Print (x ) =>
73 var temp := e . SubstText (x ) ;
74 e . Print ( temp ) ;
75 case IsAsk (x , y ) =>
76 var answer := e . Ask (y ) ; // questions cannot yet have

variables , so no subst call

77 e . Assign (x , answer ) ;
78 case Assign (x , y ) =>
79 e . Assign (x , y ) ;
80 case Turn (x ) =>
81 var num : i n t ;
82 match (x ) {
83 case Empty => num := −90;
84 case N (n ) => num := n ;
85 case V (n ) => num := e . SubstNumber (n ) ;
86 }
87 i f (e . turtle_exists == f a l s e ) {
88 e . Draw ( ) ;
89 e . turtle_exists := true ;
90 }
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91 e . Turn ( num ) ;
92 case Forward (x ) =>
93 var num : i n t ;
94 match (x ) {
95 case Empty => num := 50 ;
96 case N (n ) => num := n ;
97 case V (n ) => num := e . SubstNumber (n ) ;
98 }
99 i f (e . turtle_exists == f a l s e ) {

100 e . Draw ( ) ;
101 e . turtle_exists := true ;
102 }
103 e . Forward ( num ) ;
104 case Sleep (x ) =>
105 var num : i n t ;
106 match (x ) {
107 case Empty => num := 1 ;
108 case N (n ) => num := n ;
109 case V (n ) => num := e . SubstNumber (n ) ;
110 }
111 e . Sleep ( num ) ;
112 case Seq (c1 , c2 ) =>
113 bigstep_level2 (c1 , e ) ;
114 bigstep_level2 (c2 , e ) ;
115 }
116 }
117

118 // everything from here is for string to int conversion

119

120 datatype Maybe<T> = Nothing | Just (T )
121

122 predicate method isInt (a : char )
123 {
124 a as i n t − ’ 0 ’ as i n t <= 9
125 }
126

127

128 function method charToInt (a : char ) : i n t
129 requires isInt (a )
130 {
131 a as i n t − ’ 0 ’ as i n t
132 }
133

134 method strToInt (a : string ) returns (r : Maybe<int >)
135 requires | a | > 0
136 ensures ( forall k : : 0 <= k < | a | ==> isInt (a [ k ] ) ) ==> exists x : :

r == Just (x )
137 ensures ( exists k : : 0 <= k < | a | && ! isInt (a [ k ] ) ) ==> r == Nothing

138 {
139 i f ( isInt (a [ 0 ] ) ) {
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140 r := Just ( charToInt (a [ 0 ] ) ) ;
141 }
142 e l s e {
143 r := Nothing ;
144 }
145

146 assert ! isInt (a [ 0 ] ) ==> r == Nothing ;
147

148 f o r j := 1 to | a |
149 invariant ( forall k : : 0 <= k < | a | ==> isInt (a [ k ] ) ) ==> exists x

: : r == Just (x )
150 invariant forall k : : 0 <= k < j ==> ! isInt (a [ k ] ) ==> r ==

Nothing

151 {
152 match r {
153 case Nothing => r := Nothing ;
154 case Just (x ) =>
155 i f ( isInt (a [ j ] ) ) {
156 r := Just (x ∗ 10 + charToInt (a [ j ] ) ) ;
157 }
158 e l s e {
159 r := Nothing ;
160 }
161 }
162 }
163 }
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C: Dafny implementation of Level 3

1 // Level 3 and 4

2 datatype Com3 = Print ( string )
3 | IsAsk ( string , string )
4 | Assign ( string , M )
5 | Turn (O3 )
6 | Forward (O3 )
7 | Sleep (O3 )
8 | AddTo (M , L )
9 | RemoveFrom (M , L )

10 | Seq (Com3 , Com3 )
11

12 datatype O3 = Empty

13 | N ( i n t )
14 | V ( string )
15 | AtRandom (L )
16

17 datatype M = N ( i n t ) | V ( string ) | L (seq<M>) // list not uniform

18

19 type L = seq<M>
20

21 type Mem3 = map<string , M> // Loc = string

22

23 trait Env3

24 {
25 var turtle_exists : bool
26 var sigma : Mem3 // memory var-val

27 method Print ( output : string ) modifies t h i s
28 method Ask ( question : string ) returns ( input : M ) modifies t h i s
29 method Turn ( angle : i n t ) modifies t h i s
30 method Forward ( step : i n t ) modifies t h i s
31 method Draw ( ) modifies t h i s
32 method Assign ( variable : string , value : M ) modifies t h i s
33 {
34 sigma := sigma [ variable := value ] ;
35 }
36 method Sleep ( time : i n t ) modifies t h i s
37 method SubstText ( plaintext : string ) returns ( valuestext : string )

modifies t h i s
38 {
39 var indexbegin := | plaintext | + 1 ;
40 var indexend := | plaintext | + 1 ;
41 f o r i := 0 to | plaintext | {
42 f o r j := i to | plaintext | {
43 i f ( plaintext [ i . . j ] in sigma ) {
44 indexbegin := i ;
45 indexend := j ;
46 match ( sigma [ plaintext [ i . . j ] ] )
47 case N (x ) =>
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48 var temp := intToStr (x ) ;
49 valuestext := valuestext + temp ;
50 case V (x ) =>
51 valuestext := valuestext + x ;
52 case L (x ) =>
53 Error ( ”Cannot p r i n t a l i s t ” ) ;
54 }
55 }
56 i f (i < indexbegin | | i > indexend ) { // now we can be

sure that there is no var at index i

57 valuestext := valuestext + [ plaintext [ i ] ] ;
58 }
59 }
60 }
61 method SubstNumber ( name : string ) returns ( number : i n t ) modifies

t h i s
62 {
63 i f ( name in sigma )
64 {
65 match ( sigma [ name ] ) {
66 case N (x ) => number := x ;
67 case V (x ) => Error ( ” the v a l u e o f t h i s v a r i a b l e i s not

a number but a s t r i n g ” ) ;
68 case L (x ) => Error ( ” the v a l u e o f t h i s v a r i a b l e i s not

a number but a l i s t ” ) ;
69 }
70 }
71 e l s e {
72 Error ( ” not a v a r i a b l e ” ) ;
73 }
74 }
75 method Error ( exception : string ) modifies t h i s
76 method AddTo ( element : M , list : L ) modifies t h i s
77 method RemoveFrom ( element : M , list : L ) modifies t h i s
78 method Random ( list : L ) returns ( element : M ) modifies t h i s
79 }
80

81 type Config3 = (Com3 , Env3 )
82 type Derivation3 = seq<Config3>
83

84 method bigstep_level3 (c : Com3 , e : Env3 )
85 modifies e

86 {
87 match (c ) {
88 case Print (x ) =>
89 var temp := e . SubstText (x ) ;
90 e . Print ( temp ) ;
91 case IsAsk (x , y ) =>
92 var answer := e . Ask (y ) ; // questions cannot yet have

variables , so no subst call

47



93 e . Assign (x , answer ) ;
94 case Assign (x , y ) =>
95 e . Assign (x , y ) ;
96 case Turn (x ) =>
97 var num : i n t ;
98 match (x ) { //x is of type O3

99 case Empty => num := −90;
100 case N (n ) => num := n ;
101 case V (n ) => num := e . SubstNumber (n ) ;
102 case AtRandom (l ) => {
103 var temp := e . Random (l ) ;
104 match ( temp ) { // temp is of type M

105 case N (m ) => num := m ;
106 case V (m ) => e . Error ( ”Us ing v a r i a b l e s th rough

a l i s t and at random i s not accep ted ” ) ;
107 case L (m ) => e . Error ( ”Nes t i ng l i s t s , so u s i n g

l i s t s o f l i s t s i s not accep ted ” ) ;
108 }
109 }
110 }
111 i f (e . turtle_exists == f a l s e ) {
112 e . Draw ( ) ;
113 e . turtle_exists := true ;
114 }
115 e . Turn ( num ) ;
116 case Forward (x ) =>
117 var num : i n t ;
118 match (x ) {
119 case Empty => num := 50 ;
120 case N (n ) => num := n ;
121 case V (n ) => num := e . SubstNumber (n ) ;
122 case AtRandom (l ) => {
123 var temp := e . Random (l ) ;
124 match ( temp ) { // temp is of type M

125 case N (m ) => num := m ;
126 case V (m ) => e . Error ( ”Us ing v a r i a b l e s th rough

a l i s t and at random i s not accep ted ” ) ;
127 case L (m ) => e . Error ( ”Nes t i ng l i s t s , so u s i n g

l i s t s o f l i s t s i s not accep ted ” ) ;
128 }
129 }
130 }
131 i f (e . turtle_exists == f a l s e ) {
132 e . Draw ( ) ;
133 e . turtle_exists := true ;
134 }
135 e . Forward ( num ) ;
136 case Sleep (x ) =>
137 var num : i n t ;
138 match (x ) {
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139 case Empty => num := 1 ;
140 case N (n ) => num := n ;
141 case V (n ) => num := e . SubstNumber (n ) ;
142 case AtRandom (l ) => {
143 var temp := e . Random (l ) ;
144 match ( temp ) { // temp is of type M

145 case N (m ) => num := m ;
146 case V (m ) => e . Error ( ”Us ing v a r i a b l e s th rough

a l i s t and at random i s not accep ted ” ) ;
147 case L (m ) => e . Error ( ”Nes t i ng l i s t s , so u s i n g

l i s t s o f l i s t s i s not accep ted ” ) ;
148 }
149 }
150 }
151 e . Sleep ( num ) ;
152 case AddTo (x , l ) =>
153 e . AddTo (x , l ) ;
154 case RemoveFrom (x , l ) =>
155 e . RemoveFrom (x , l ) ;
156 case Seq (c1 , c2 ) =>
157 bigstep_level3 (c1 , e ) ;
158 bigstep_level3 (c2 , e ) ;
159 }
160 }
161

162 // everything from here is for conversion string to int or int to

string

163

164 datatype Maybe<T> = Nothing | Just (T )
165

166 predicate method isInt (a : char )
167 {
168 a as i n t − ’ 0 ’ as i n t <= 9
169 }
170

171 function method charToInt (a : char ) : i n t
172 requires isInt (a )
173 {
174 a as i n t − ’ 0 ’ as i n t
175 }
176

177 function method intToChar (a : nat ) : char
178 requires a <= 9
179 {
180 a as char + ’ 0 ’ as char
181 }
182

183 method strToInt (a : string ) returns (r : Maybe<int >)
184 requires | a | > 0
185 ensures ( forall k : : 0 <= k < | a | ==> isInt (a [ k ] ) ) ==> exists x : :
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r == Just (x )
186 ensures ( exists k : : 0 <= k < | a | && ! isInt (a [ k ] ) ) ==> r == Nothing

187 {
188 i f ( isInt (a [ 0 ] ) ) {
189 r := Just ( charToInt (a [ 0 ] ) ) ;
190 }
191 e l s e {
192 r := Nothing ;
193 }
194

195 assert ! isInt (a [ 0 ] ) ==> r == Nothing ;
196

197 f o r j := 1 to | a |
198 invariant ( forall k : : 0 <= k < | a | ==> isInt (a [ k ] ) ) ==> exists x

: : r == Just (x )
199 invariant forall k : : 0 <= k < j ==> ! isInt (a [ k ] ) ==> r ==

Nothing

200 {
201 match r {
202 case Nothing => r := Nothing ;
203 case Just (x ) =>
204 i f ( isInt (a [ j ] ) ) {
205 r := Just (x ∗ 10 + charToInt (a [ j ] ) ) ;
206 }
207 e l s e {
208 r := Nothing ;
209 }
210 }
211 }
212 }
213

214 method intToStr (a : i n t ) returns (r : string )
215 {
216 r := ”” ;
217 var temp1 := a ;
218 whi le temp1 > 0
219 decreases temp1

220 {
221 var temp2 := temp1 % 10 ;
222 r := [ intToChar ( temp2 ) ] + r ;
223 temp1 := ( temp1 − temp2 ) / 10 ;
224 }
225 }
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D: Dafny implementation of Level 4

1 // Level 3 and 4

2 datatype Com3 = Print ( string )
3 | IsAsk ( string , string )
4 | Assign ( string , M )
5 | Turn (O3 )
6 | Forward (O3 )
7 | Sleep (O3 )
8 | AddTo (M , L )
9 | RemoveFrom (M , L )

10 | Seq (Com3 , Com3 )
11

12 datatype O3 = Empty

13 | N ( i n t )
14 | V ( string )
15 | AtRandom (L )
16

17 datatype M = N ( i n t ) | V ( string ) | L (seq<M>) // list not uniform

18

19 type L = seq<M>
20

21 type Mem3 = map<string , M> // Loc = string

22

23 trait Env3

24 {
25 var turtle_exists : bool
26 var sigma : Mem3 // memory var-val

27 method Print ( output : string ) modifies t h i s
28 method Ask ( question : string ) returns ( input : M ) modifies t h i s
29 method Turn ( angle : i n t ) modifies t h i s
30 method Forward ( step : i n t ) modifies t h i s
31 method Draw ( ) modifies t h i s
32 method Assign ( variable : string , value : M ) modifies t h i s
33 {
34 sigma := sigma [ variable := value ] ;
35 }
36 method Sleep ( time : i n t ) modifies t h i s
37 method SubstText ( plaintext : string ) returns ( valuestext : string )

modifies t h i s
38 {
39 var indexbegin := | plaintext | + 1 ;
40 var indexend := | plaintext | + 1 ;
41 var quotes := f a l s e ;
42 f o r i := 0 to | plaintext | {
43 i f ( plaintext [ i ] == ’ \ ’ ’ ) {
44 quotes := ! quotes ;
45 }
46 f o r j := i to | plaintext | {
47 i f ( plaintext [ i . . j ] in sigma && ! quotes ) {
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48 indexbegin := i ;
49 indexend := j ;
50 match ( sigma [ plaintext [ i . . j ] ] )
51 case N (x ) =>
52 Error ( ”Text used w i thout quote s ” ) ;
53 case V (x ) =>
54 valuestext := valuestext + x ;
55 case L (x ) =>
56 Error ( ”Cannot p r i n t a l i s t ” ) ;
57 }
58 }
59 i f ( ( i < indexbegin | | i > indexend ) && plaintext [ i ] != ’

\ ’ ’ ) { // now we can be sure that there is no var at

index i

60 valuestext := valuestext + [ plaintext [ i ] ] ;
61 }
62 }
63 }
64 method SubstNumber ( name : string ) returns ( number : i n t ) modifies

t h i s
65 {
66 i f ( name in sigma )
67 {
68 match ( sigma [ name ] ) {
69 case N (x ) => number := x ;
70 case V (x ) => Error ( ” the v a l u e o f t h i s v a r i a b l e i s not

a number but a s t r i n g ” ) ;
71 case L (x ) => Error ( ” the v a l u e o f t h i s v a r i a b l e i s not

a number but a l i s t ” ) ;
72 }
73 }
74 e l s e {
75 Error ( ” not a v a r i a b l e ” ) ;
76 }
77 }
78 method Error ( exception : string ) modifies t h i s
79 method AddTo ( element : M , list : L ) modifies t h i s
80 method RemoveFrom ( element : M , list : L ) modifies t h i s
81 method Random ( list : L ) returns ( element : M ) modifies t h i s
82 }
83

84 type Config3 = (Com3 , Env3 )
85 type Derivation3 = seq<Config3>
86

87 method bigstep_level3 (c : Com3 , e : Env3 )
88 modifies e

89 {
90 match (c ) {
91 case Print (x ) =>
92 var temp := e . SubstText (x ) ;
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93 e . Print ( temp ) ;
94 case IsAsk (x , y ) =>
95 var answer := e . Ask (y ) ; // questions cannot yet have

variables , so no subst call

96 e . Assign (x , answer ) ;
97 case Assign (x , y ) =>
98 e . Assign (x , y ) ;
99 case Turn (x ) =>

100 var num : i n t ;
101 match (x ) { //x is of type O3

102 case Empty => num := −90;
103 case N (n ) => num := n ;
104 case V (n ) => num := e . SubstNumber (n ) ;
105 case AtRandom (l ) => {
106 var temp := e . Random (l ) ;
107 match ( temp ) { // temp is of type M

108 case N (m ) => num := m ;
109 case V (m ) => e . Error ( ”Us ing v a r i a b l e s th rough

a l i s t and at random i s not accep ted ” ) ;
110 case L (m ) => e . Error ( ”Nes t i ng l i s t s , so u s i n g

l i s t s o f l i s t s i s not accep ted ” ) ;
111 }
112 }
113 }
114 i f (e . turtle_exists == f a l s e ) {
115 e . Draw ( ) ;
116 e . turtle_exists := true ;
117 }
118 e . Turn ( num ) ;
119 case Forward (x ) =>
120 var num : i n t ;
121 match (x ) {
122 case Empty => num := 50 ;
123 case N (n ) => num := n ;
124 case V (n ) => num := e . SubstNumber (n ) ;
125 case AtRandom (l ) => {
126 var temp := e . Random (l ) ;
127 match ( temp ) { // temp is of type M

128 case N (m ) => num := m ;
129 case V (m ) => e . Error ( ”Us ing v a r i a b l e s th rough

a l i s t and at random i s not accep ted ” ) ;
130 case L (m ) => e . Error ( ”Nes t i ng l i s t s , so u s i n g

l i s t s o f l i s t s i s not accep ted ” ) ;
131 }
132 }
133 }
134 i f (e . turtle_exists == f a l s e ) {
135 e . Draw ( ) ;
136 e . turtle_exists := true ;
137 }
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138 e . Forward ( num ) ;
139 case Sleep (x ) =>
140 var num : i n t ;
141 match (x ) {
142 case Empty => num := 1 ;
143 case N (n ) => num := n ;
144 case V (n ) => num := e . SubstNumber (n ) ;
145 case AtRandom (l ) => {
146 var temp := e . Random (l ) ;
147 match ( temp ) { // temp is of type M

148 case N (m ) => num := m ;
149 case V (m ) => e . Error ( ”Us ing v a r i a b l e s th rough

a l i s t and at random i s not accep ted ” ) ;
150 case L (m ) => e . Error ( ”Nes t i ng l i s t s , so u s i n g

l i s t s o f l i s t s i s not accep ted ” ) ;
151 }
152 }
153 }
154 e . Sleep ( num ) ;
155 case AddTo (x , l ) =>
156 e . AddTo (x , l ) ;
157 case RemoveFrom (x , l ) =>
158 e . RemoveFrom (x , l ) ;
159 case Seq (c1 , c2 ) =>
160 bigstep_level3 (c1 , e ) ;
161 bigstep_level3 (c2 , e ) ;
162 }
163 }
164

165 // everything from here is for conversion string to int or int to

string

166

167 datatype Maybe<T> = Nothing | Just (T )
168

169 predicate method isInt (a : char )
170 {
171 a as i n t − ’ 0 ’ as i n t <= 9
172 }
173

174 function method charToInt (a : char ) : i n t
175 requires isInt (a )
176 {
177 a as i n t − ’ 0 ’ as i n t
178 }
179

180 function method intToChar (a : nat ) : char
181 requires a <= 9
182 {
183 a as char + ’ 0 ’ as char
184 }
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185

186 method strToInt (a : string ) returns (r : Maybe<int >)
187 requires | a | > 0
188 ensures ( forall k : : 0 <= k < | a | ==> isInt (a [ k ] ) ) ==> exists x : :

r == Just (x )
189 ensures ( exists k : : 0 <= k < | a | && ! isInt (a [ k ] ) ) ==> r == Nothing

190 {
191 i f ( isInt (a [ 0 ] ) ) {
192 r := Just ( charToInt (a [ 0 ] ) ) ;
193 }
194 e l s e {
195 r := Nothing ;
196 }
197

198 assert ! isInt (a [ 0 ] ) ==> r == Nothing ;
199

200 f o r j := 1 to | a |
201 invariant ( forall k : : 0 <= k < | a | ==> isInt (a [ k ] ) ) ==> exists x

: : r == Just (x )
202 invariant forall k : : 0 <= k < j ==> ! isInt (a [ k ] ) ==> r ==

Nothing

203 {
204 match r {
205 case Nothing => r := Nothing ;
206 case Just (x ) =>
207 i f ( isInt (a [ j ] ) ) {
208 r := Just (x ∗ 10 + charToInt (a [ j ] ) ) ;
209 }
210 e l s e {
211 r := Nothing ;
212 }
213 }
214 }
215 }
216

217 method intToStr (a : i n t ) returns (r : string )
218 {
219 r := ”” ;
220 var temp1 := a ;
221 whi le temp1 > 0
222 decreases temp1

223 {
224 var temp2 := temp1 % 10 ;
225 r := [ intToChar ( temp2 ) ] + r ;
226 temp1 := ( temp1 − temp2 ) / 10 ;
227 }
228 }
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E: Dafny implementation of Level 5

1 // Level 5

2

3 datatype Com5 = Print ( string )
4 | IsAsk ( string , string )
5 | Assign ( string , M )
6 | Turn (O5 )
7 | Forward (O5 )
8 | Sleep (O5 )
9 | AddTo (M , L )

10 | RemoveFrom (M , L )
11 | If (B , Com5 )
12 | IfElse (B , Com5 , Com5 )
13 | Seq (Com5 , Com5 )
14

15 datatype O5 = Empty | N ( i n t ) | V ( string ) | AtRandom (L ) //O5 same as

O3, still used from level 3

16

17 datatype M = N ( i n t ) | V ( string ) | L (seq<M>) //from level 3 still used

18

19 type L = seq<M> // still used from level 3

20

21 datatype B = Eq (M , M ) // M is M

22 | Elem (M , L ) // string in L

23

24 type Mem5 = map<string , M> // Loc = string

25

26 trait Env5

27 {
28 var turtle_exists : bool
29 var sigma : Mem5 // memory var-val

30 method Print ( output : string ) modifies t h i s
31 method Ask ( question : string ) returns ( input : M ) modifies t h i s
32 method Turn ( angle : i n t ) modifies t h i s
33 method Forward ( step : i n t ) modifies t h i s
34 method Draw ( ) modifies t h i s
35 method Assign ( variable : string , value : M ) modifies t h i s
36 {
37 sigma := sigma [ variable := value ] ;
38 }
39 method Sleep ( time : i n t ) modifies t h i s
40 method SubstText ( plaintext : string ) returns ( valuestext : string )

modifies t h i s
41 {
42 var indexbegin := | plaintext | + 1 ;
43 var indexend := | plaintext | + 1 ;
44 var quotes := f a l s e ;
45 f o r i := 0 to | plaintext | {
46 i f ( plaintext [ i ] == ’ \ ’ ’ ) {
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47 quotes := ! quotes ;
48 }
49 f o r j := i to | plaintext | {
50 i f ( plaintext [ i . . j ] in sigma && ! quotes ) {
51 indexbegin := i ;
52 indexend := j ;
53 match ( sigma [ plaintext [ i . . j ] ] )
54 case N (x ) =>
55 Error ( ”Text used w i thout quote s ” ) ;
56 case V (x ) =>
57 valuestext := valuestext + x ;
58 case L (x ) =>
59 Error ( ”Cannot p r i n t a l i s t ” ) ;
60 }
61 }
62 i f ( ( i < indexbegin | | i > indexend ) && plaintext [ i ] != ’

\ ’ ’ ) { // now we can be sure that there is no var at

index i

63 valuestext := valuestext + [ plaintext [ i ] ] ;
64 }
65 }
66 }
67 method SubstNumber ( name : string ) returns ( number : i n t ) modifies

t h i s
68 {
69 i f ( name in sigma )
70 {
71 match ( sigma [ name ] ) {
72 case N (x ) => number := x ;
73 case V (x ) => Error ( ” the v a l u e o f t h i s v a r i a b l e i s not

a number but a s t r i n g ” ) ;
74 case L (x ) => Error ( ” the v a l u e o f t h i s v a r i a b l e i s not

a number but a l i s t ” ) ;
75 }
76 }
77 e l s e {
78 Error ( ” not a v a r i a b l e ” ) ;
79 }
80 }
81 method Error ( exception : string ) modifies t h i s
82 method AddTo ( element : M , list : L ) modifies t h i s
83 method RemoveFrom ( element : M , list : L ) modifies t h i s
84 method Random ( list : L ) returns ( element : M ) modifies t h i s
85 method Eq (x : M , y : M ) returns ( cond : bool ) modifies t h i s
86 {
87 match (x , y ) {
88 case (N (n1 ) , N (n2 ) ) =>
89 cond := n1 == n2 ;
90 case (N (n ) , V (v ) ) =>
91 var temp := SubstNumber (v ) ;
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92 cond := n == temp ;
93 case (N (n ) , L (l ) ) =>
94 Error ( ”Cannot compare l i s t w i th i n t ” ) ;
95 case (V (v ) , N (n ) ) =>
96 var temp := SubstNumber (v ) ;
97 cond := n == temp ;
98 case (V (v1 ) , V (v2 ) ) =>
99 var temp1 := SubstText (v1 ) ;

100 var temp2 := SubstText (v2 ) ;
101 cond := temp1 == temp2 ;
102 case (V (v ) , L (l ) ) =>
103 Error ( ”Cannot compare v a r i a b l e o r s t r i n g wi th l i s t ” ) ;
104 case (L (l ) , N (n ) ) =>
105 Error ( ”Cannot compare l i s t w i th i n t ” ) ;
106 case (L (l ) , V (v ) ) =>
107 Error ( ”Cannot compare v a r i a b l e o r s t r i n g wi th l i s t ” ) ;
108 case (L (l1 ) , L (l2 ) ) =>
109 cond := l1 == l2 ;
110 }
111 }
112 method Elem (x : M , y : L ) returns ( cond : bool ) modifies t h i s
113 {
114 cond := f a l s e ;
115 f o r i := 0 to | y | {
116 i f (x == y [ i ] && cond == f a l s e ) {cond := true ;}
117 }
118 }
119 }
120

121 type Config5 = (Com5 , Env5 )
122 type Derivation5 = seq<Config5>
123

124

125

126 method bigstep_level5 (c : Com5 , e : Env5 )
127 modifies e

128 {
129 match (c ) {
130 case Print (x ) =>
131 var temp := e . SubstText (x ) ;
132 e . Print ( temp ) ;
133 case IsAsk (x , y ) =>
134 var answer := e . Ask (y ) ; // questions cannot yet have

variables , so no subst call

135 e . Assign (x , answer ) ;
136 case Assign (x , y ) =>
137 e . Assign (x , y ) ;
138 case Turn (x ) =>
139 var num : i n t ;
140 match (x ) { //x is of type O3
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141 case Empty => num := −90;
142 case N (n ) => num := n ;
143 case V (n ) => num := e . SubstNumber (n ) ;
144 case AtRandom (l ) => {
145 var temp := e . Random (l ) ;
146 match ( temp ) { // temp is of type M

147 case N (m ) => num := m ;
148 case V (m ) => e . Error ( ”Us ing v a r i a b l e s th rough

a l i s t and at random i s not accep ted ” ) ;
149 case L (m ) => e . Error ( ”Nes t i ng l i s t s , so u s i n g

l i s t s o f l i s t s i s not accep ted ” ) ;
150 }
151 }
152 }
153 i f (e . turtle_exists == f a l s e ) {
154 e . Draw ( ) ;
155 e . turtle_exists := true ;
156 }
157 e . Turn ( num ) ;
158 case Forward (x ) =>
159 var num : i n t ;
160 match (x ) {
161 case Empty => num := 50 ;
162 case N (n ) => num := n ;
163 case V (n ) => num := e . SubstNumber (n ) ;
164 case AtRandom (l ) => {
165 var temp := e . Random (l ) ;
166 match ( temp ) { // temp is of type M

167 case N (m ) => num := m ;
168 case V (m ) => e . Error ( ”Us ing v a r i a b l e s th rough

a l i s t and at random i s not accep ted ” ) ;
169 case L (m ) => e . Error ( ”Nes t i ng l i s t s , so u s i n g

l i s t s o f l i s t s i s not accep ted ” ) ;
170 }
171 }
172 }
173 i f (e . turtle_exists == f a l s e ) {
174 e . Draw ( ) ;
175 e . turtle_exists := true ;
176 }
177 e . Forward ( num ) ;
178 case Sleep (x ) =>
179 var num : i n t ;
180 match (x ) {
181 case Empty => num := 1 ;
182 case N (n ) => num := n ;
183 case V (n ) => num := e . SubstNumber (n ) ;
184 case AtRandom (l ) => {
185 var temp := e . Random (l ) ;
186 match ( temp ) { // temp is of type M
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187 case N (m ) => num := m ;
188 case V (m ) => e . Error ( ”Us ing v a r i a b l e s th rough

a l i s t and at random i s not accep ted ” ) ;
189 case L (m ) => e . Error ( ”Nes t i ng l i s t s , so u s i n g

l i s t s o f l i s t s i s not accep ted ” ) ;
190 }
191 }
192 }
193 e . Sleep ( num ) ;
194 case AddTo (x , l ) =>
195 e . AddTo (x , l ) ;
196 case RemoveFrom (x , l ) =>
197 e . RemoveFrom (x , l ) ;
198 case If (b , c1 ) =>
199 var condition : bool ;
200 match (b ) {
201 case Eq (x , y ) => condition := e . Eq (x , y ) ;
202 case Elem (x , y ) => condition := e . Elem (x , y ) ;
203 }
204 i f ( condition ) {bigstep_level5 (c1 , e ) ;}
205 case IfElse (b , c1 , c2 ) =>
206 var condition : bool ;
207 match (b ) {
208 case Eq (x , y ) => condition := e . Eq (x , y ) ;
209 case Elem (x , y ) => condition := e . Elem (x , y ) ;
210 }
211 i f ( condition ) {bigstep_level5 (c1 , e ) ;} e l s e {

bigstep_level5 (c2 , e ) ;}
212 case Seq (c1 , c2 ) =>
213 bigstep_level5 (c1 , e ) ;
214 bigstep_level5 (c2 , e ) ;
215 }
216 }
217

218 // everything from here is for conversion of string to int or int to

string

219

220 datatype Maybe<T> = Nothing | Just (T )
221

222 predicate method isInt (a : char )
223 {
224 a as i n t − ’ 0 ’ as i n t <= 9
225 }
226

227 function method charToInt (a : char ) : i n t
228 requires isInt (a )
229 {
230 a as i n t − ’ 0 ’ as i n t
231 }
232
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233 function method intToChar (a : nat ) : char
234 requires a <= 9
235 {
236 a as char + ’ 0 ’ as char
237 }
238

239 method strToInt (a : string ) returns (r : Maybe<int >)
240 requires | a | > 0
241 ensures ( forall k : : 0 <= k < | a | ==> isInt (a [ k ] ) ) ==> exists x : :

r == Just (x )
242 ensures ( exists k : : 0 <= k < | a | && ! isInt (a [ k ] ) ) ==> r == Nothing

243 {
244 i f ( isInt (a [ 0 ] ) ) {
245 r := Just ( charToInt (a [ 0 ] ) ) ;
246 }
247 e l s e {
248 r := Nothing ;
249 }
250

251 assert ! isInt (a [ 0 ] ) ==> r == Nothing ;
252

253 f o r j := 1 to | a |
254 invariant ( forall k : : 0 <= k < | a | ==> isInt (a [ k ] ) ) ==> exists x

: : r == Just (x )
255 invariant forall k : : 0 <= k < j ==> ! isInt (a [ k ] ) ==> r ==

Nothing

256 {
257 match r {
258 case Nothing => r := Nothing ;
259 case Just (x ) =>
260 i f ( isInt (a [ j ] ) ) {
261 r := Just (x ∗ 10 + charToInt (a [ j ] ) ) ;
262 }
263 e l s e {
264 r := Nothing ;
265 }
266 }
267 }
268 }
269

270 method intToStr (a : i n t ) returns (r : string )
271 {
272 r := ”” ;
273 var temp1 := a ;
274 whi le temp1 > 0
275 decreases temp1

276 {
277 var temp2 := temp1 % 10 ;
278 r := [ intToChar ( temp2 ) ] + r ;
279 temp1 := ( temp1 − temp2 ) / 10 ;
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280 }
281 }
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